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Data aequatione quotcunque fluentes quantitae involvente
fluxiones invenire et vice versa.

Sir Isaac Newton, 1687.

(It is useful to solve differential equations.)!
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Chapter 1

Introduction

This introduction summarizes the motivation, problem, approach, and contributions
of this thesis.

1.1 Motivation

High performance computing is in a transition between vector supercomputing and
scalable multicomputing. The software strategies which are effective under these two
paradigms are different. Scalable multicomputers require scalable algorithms. These
are algorithms whose elapsed time complexities do not grow “unreasonably fast” as
the problem size scales with the computer system.

1.2 Problem

The efficiency of grid based computations depends on the load balance among pro-
cessors. Scalable grid computations require scalable load balancing methods. These
methods must compute a balanced load distribution while preserving adjacency rela-
tionships of a computational domain.

1.3 Approach

Treat the computers in a scalable multicomputer as nodes in a computational grid.
Use finite difference techniques to solve the heat equation on this grid. Adjust the



4 CHAPTER 1. INTRODUCTION

workloads among computers to equal the evolving solution. Use only transfers be-
tween pairs of adjacent computers for this adjustment.

1.4 Contributions

A simple, correct and scalable load balancing method for grid computations. Correct-
ness of the balance and adjacency properties are demonstrated. Elapsed execution
time diminishes with increasing problem size. This demonstrates the algorithm is
scalable in NV without upper bound and load balance can be maintained at negligible
cost for large grid computations.

The algorithm is efficient. Simulations of generic problems from computational
fluid dynamics predict that a fraction of a second of elapsed time is sufficient to
rebalance after grid adaptations. FEven less time is required to solve a static load
balancing problem for a million point grid computation on 512 computers.

An analysis of convergence is provided for the static load balancing problem.
The time to converge the dynamic problem is usually different than predicted by
this static analysis. For this reason simulations are recommended to provide bounds
for specific problems instances. The fourth chapter presents simulations of generic
problem instances which are of interest in computational fluid dynamics.



Chapter 2

The load balancing problem

The “load balancing” problem has been often discussed but rarely given formal defini-
tion. Load balancing is necessary in order to achieve effective use of a multicomputer.
In the context of an operating system it is necessary to keep all computers busy in or-
der to achieve maximal throughput. A mechanism must exist to ensure that tasks are
distributed evenly among the computers. Otherwise some computers will be under-
utilized and overall throughput decreased. In the context of algorithms which require
synchronization poorly balanced loads will result in some computers sitting idle while
they wait for more heavily loaded computers to reach synchronization points. This
problem affects most scientific calculations because most numerical algorithms require
frequent synchronization.

Problem 2.1 (Load Balancing): Let € represent a set of elements of a computa-
tional domain and ) a set of computers. Let ¢ :  — @ and ¢’ :  — ) represent
assignments of elements to computers and , @' the measured workloads on the com-
puters under the assignments ¢, ¢’. The load balancing problem is to compute, given
an initial assignment ¢, a new assignment ¢’ and vector Au such that

(2.1.a) @+ Ad = .
(21b) ‘LLZ'/ = u]-’ \V/L,J € ¢

(2.1.¢c) ¢' preserves adjacencies of (2.

(&3¢
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The load balancing problem is often described as two problems: the “static”
problem, in which the goal is to compute an initial assignment from a set of elements
to a set of computers, such that every computer has the same workload; and the
“dynamic” problem, in which the goal is to maintain a balanced workload under
changing conditions. This distinction is unecessary since the static problem is a special
case of the dynamic problem in which the initial assignment is trivial. The simplest
trivial assignment locates all elements on a single computer. Further discussion of
the static problem will assume this assignment.

Call conditions (2.1.a), (2.1.b) the “balance” requirement and (2.1.c) the “adja-
cency” requirement. The adjacency requirement holds that two elements wy, w; which
are adjacent in the computational domain £ must reside on either the same computer
or on a pair of adjacent computers. The workload u; on a computer ; is determined
from the loads of the individual elements w which are assigned to ; as

u; = Z size(w) (2.1)

{we|p(w)=1:}

where size(w) measures the workload imposed by w on the computer ;. Taken
in isolation this requirement permits pathological solutions, such as one where all
elements are assigned to a single computer. When this requirement is combined with
the balance requirement pathological solutions are no longer permitted.

The adjacency requirement is necessary to minimize the cost of communication in
domain decomposed calculations. Under the assumption that most communication
occurs among adjacent elements of a computational domain an assignment ¢ which
preserves the adjacencies in {2 minimizes the distances messages have to traverse in
the multicomputer. This assumption applies to many problems in computational
fluid dynamics and finite elements. As a result it is possible for these calculations
to execute on multicomputers without contention for communication channels during
a complete simultaneous exchange of data among adjacent elements. This type of
exchange is the dominant form of communication for many scalable algorithms.

Bhokari [10] noted that the load balancing problem in full generality is NP-
complete by transformation from the graph isomorphism problem. The graph iso-
morphism problem decides whether two arbitrary graphs are the same. An algorithm
which computes solutions to problem 2.1 can solve the graph isomorphism problem if
it considers the adjacencies of the problem domain to define one graph and the inter-
connection structure of the computer system another. If the interconnection structure
is assumed to be a mesh then algorithms which solve problem 2.1 cannot solve the
graph isomorphism problem. In this case NP-completeness of 2.1 still follows from



the balance requirement. The proof is by transformation from the partition problem

[26]:

Given a finite set ) of elements w each with positive integer size(w). Does
there exist a subset (' C € such that

Z size(w) = Z size(w)

wel! we{Q-Q'}

This proof can be invalidated by making a further assumption that elements w have
equal weight. Then without loss of generality size(w) = 1 for all w. Under this
assumption polynomial and even logarithmic methods exist to satisfy the balance
requirement (2.1.a), (2.1.b). The problem of computing Au or «’ can be solved by a
simple tree structured algorithm. The algorithm executes in a sequential number of
steps which is logarithmic in the size of the computer system. In order to be useful
any load balancing method should be as simple to implement as this algorithm and
should require no more elapsed time.

This simple algorithm executes on every computer ;. The goal of the algorithm
is to identify the average sy of the workloads u; under an initial assignment ¢. Com-
puters are identified with nodes of a tree with the understanding that leaf nodes are
their own children and the root it’s own parent.

Algorithm SIMPLE:

e Compute local workload u; from expression (2.1).
e Receive sum s; and count ¢; from every child ;.
e Compute ¢; =1+ 2. €

o Compute s; = (u; + )_; s55¢5)/ ¢

e Send s; and ¢; to parent ¥y,

Algorithm SIMPLE begins execution at the leaf nodes and terminates at the root.
At each node of the tree a computer receives the average workload in each subtree
below it. The computer uses these subtree averages to compute a new average for the
subtree of which it is the root. It passes this new average to it’s parent.

By induction it is easy to see that this algorithm terminates in a state where s¢ for
computer 0 at the root of the tree is equal to the average workload among all of the
computers. This termination condition does not satisfy the balance requirement. In
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order to satisfy (2.1.a) it is necessary to compute a vector Ad. This is accomplished
by communicating s through the tree in the opposite order, from the root to the
leaves.

Algorithm SIMPLE2:

e Receive sg from the parent computer.
e Send sg to every child computer.

e Compute Au; = sg — u;.

Algorithms SIMPLE and SIMPLEZ2 contain serial dependencies. These serial
dependencies make the algorithms inefficient. They are inefficient because each com-
puter is idle in all but one of the sequential steps of execution. It would be nice to
find a concurrent algorithm to compute so. A concurrent algorithm like the following
one is potentially more efficient because no computer is idle in any step. It is not
difficult to imagine this algorithm converges to something like sq. It has even been
proposed informally as a load balancing method. Unfortunately it would not a make
a very good one.

Algorithm AVERAGE:

e Compute local workload u; from expression (2.1).
o Let u;(o) = u;.
e Form=1tor

— Send u’gm_l) to each of J neighbors ;.

— Receive v/ ;m_l) from every neighbor ;.
— Compute u’gm) = (1/J)%; u’gm_l).
e EndFor m.

()

Compute Au; = v’} — u;.

Algorithm AVERAGE is a concurrent iteration in which every computer receives

;m_l) at it’s neighbors, computes their average value, and then ad-
justs it’s own workload u’gm)

the workloads '

to equal that average. It is easy to be persuaded that



this converges to a steady state in which @™ = (™~ and this is the truth. Un-
fortunately this steady state rarely satisfies the balance requirement of problem 2.1
!, For any one dimensional problem the steady state reduces to

(m) 1 ( s(m—1) (m—1)

. _ , 2
Wi =5 Wirai T Wig )

This solution can be expanded in Taylor series to demonstrate that

2u'; = uwipg +ui_g
, oy au’f 9 . 8u’? 3 4
= [u i+ 92 di + 57 (di®/2) + 9 (di”/6) + O(de )]
,Ou o ou 'y 4
+ [u i~ s di + 57 (di®/2) — %(dz /6) + O(di )]
— 9 r _I_ au/? d'.2 —|— O(d4)
= ', 922 7 7
au/? ) o ¢
52 = 0 + O(di*) (2.2)

In one dimension the steady solutions of algorithm AVERAGE are second order
accurate solutions of the Laplace equation (2.2). These are straight lines of arbitrary
slope. Only the line of slope zero satisfies (2.1.b).

An extension of this argument to higher dimensions follows immediately from the
theory of finite difference equations.

Although algorithm AVERAGE is unlikely to converge to solutions of problem
2.1 there are reasons to like it. It is concurrent, and scalable in the sense that it can
execute on a multicomputer without contention for communication channels. The
converged solutions can be described by Taylor expansions since all transfers occur
between pairs of adjacent computers. The algorithm also holds the promise of com-
puting solutions which satisfy the adjacency requirement. Since all exchanges occur
between adjacent computers it should be possible to perform these exchanges without
destroying existing adjacencies. Although AVERAGE is not a correct algorithm for
load balancing it represents an approach which will be used in the next chapter to
derive a correct and scalable load balancing method.

!Specifically, this steady state satisfies the balance requirement exactly when the boundary con-
ditions are periodic.
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Chapter 3

A scalable diffusion method

Algorithm DIFFUSION:

e Compute u; from expression (2.1).

o u; = u;

e Forl=1tor

— v
— Form=1tovr

— Send vl(m_l) to all neighbors ),
— Receive v](-m_l) from neighbors v;

m m—1 v(.o)
o= (1+AJA) 2 'U;' '+ 1+7A
— EndFor m
(v)

— Send u'; to all neighbors ©;

—u;=v

1 7 / . 1 .
— Receive u'; from neighbors 1;

— Transfer A (u'; — u’;) units of work to each neighbor ;

e EndFor [

11



12 CHAPTER 3. A SCALABLE DIFFUSION METHOD

e=0.1 N (total processors)

64 512 4,096 8,000 32K 256K 10°
A 36 .21 .16 16 .16 16 .16
T 4 4 4 4 4 4 4
v 7 5 4 4 3 4 4
TIME | 21 14 13 12 12 12 12

e=10.01 N (total processors)

64 512 4,096 8,000 32K 256K 10°
A 36 .21 .16 16 .16 16 .16
T 7 8 8 8 8 8 7
v 13 8 7 7 7 7 7
TIME 84 56 49 48 47 46 45

Table 3.1: Values for constants of algorithm DIFFUSION for given N. TIME is
defined by equation (3.26) and is proportional to the elapsed time.

Heat diffusion is a process in nature in which thermal energy diffuses from hot
regions into cold ones. The heat equation % — V2% = 0 describes this process. When
taken literally the terms of this equation read that the rate of change 88? in any
element u; of a domain % depends on the curvature V2« in the vicinity of u;. This
locality makes the heat equation a good model for a scalable load balancing method.
Because the dependency is local an algorithm based on the heat equation requires
only local exchanges of information between computers. Because heat diffusion is a

concurrent process it is a good model for a concurrent algorithm.

Algorithm DIFFUSION is a concurrent iteration in which every computer de-
rives the local curvature V2@ and then adjusts it’s workload according to a finite
difference approximation to the heat equation. J is the number of computers which
are immediately adjacent to t;. The constants 7, v and A are obtained from table 3.1
for instances of the static problem. For instances of the dynamic problem the value
of 7 presented in this table is a lower bound. In these instances simulations should
be used to predict an exact value for 7.
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3.1 Derivation

Derive the algorithm for a domain corresponding to a three dimensional mesh con-
nected multicomputer. Consider the heat equation in three dimensions

u, = Viu
= Uzz —I_ uyy —I_ Uzz (31)

Taylor expand u to obtain each successive term of equation (3.1). The first term u;
is obtained by expanding in ¢ with all derivatives evaluated at (z,y,z,1).

u(z,y,z,t+dt) = ulx,y,z,t)+udt + O(dt?)

‘ s Y 7t+dt — » Y 7t
" <u<:cyz JELTETE >)+O(dt)

Expanding w in the spatial variables reveals the curvature terms (where omitted
coordinates are interpreted as (z,y, z,t)) to be

'U($+d$7'7'7') — u(7’7)_|_uzd.r_|_
dax? dz?

u(lx —dx,-,-) = ul(-,- ) — ugde +
2 3
umd% — ummd% + O(d$4)

u(z +dz, ) +ulz —de, ) = 2u(,-,-, )+ ugede® + O(dz?)

Upy = (u(:c +da, ) tule —da, ) = 2u(y )) + O(dmz)

dz?

Similar expansions in y, z show that the heat equation can be rewritten

u(x, t4+dt) — u(z, t 1
u(fayyza + di u(”C,y,Z, ):E(u(r{—d;ﬁ’y’Z’t){—u("{;—dm7y727t)—|—

u(:cfy + dy727t) + u(x,y - d‘y,Z,t) + u(:c,y,z + dZ,t)—}—
u(z,y,z —dz,t) — 6u(z,y, z,1))

Since the spatial dimension is arbitrary take de = 1. Identifying A with the time
step dt and taking the spatial terms on the right at time ¢ + A yields an implicit time
stepping scheme with unconditional stability.
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u(z,y,z,t) = (1 +6A)u(z,y,z,t + A) — Afu(z + dz,y,z,t + A) (3.2)
—|—u($ - d.fl?,‘y,Z,t + A) + u(x,y + dy,Z,t + A) + u(x,y - dy727t + A)
tu(x,y,z+dz, t+A) +u(z,y,z —dz, t + A)]

In order to compute solutions at successive time intervals A it is necessary to
invert the relation @ = A#(“+%) by solving

N = A71g® (3.3)

From (3.2) it is apparent that each row of A contains a diagonal term (1 4+ 6A)
and six offdiagonals —A. Let A = (D — T') where D is diagonal. Then the relation
7)) = Ag(t+A) g equivalent to 7)) — D=17g+A) L =150 This relation is satisfied
by fixed points of the Jacobi iteration

[ﬁ@m](m) _ p-ip [ﬁ<t+A)]<m—1> 1 p-1g (3.4)

The matrix D717 has a zero diagonal and six offdiagonal terms 1+AGA. D™!is a
1_|_16A. Iteration (3.4) is the central loop of algorithm
DIFFUSION. This iteration is convergent from all initial conditions and has spectral
radius defined by (3.23). Since the iteration is concurrent in all of the unknowns it

converges at the same rate as a Gauss-Seidel iteration.

diagonal matrix with terms

3.2 Correctness

The correctness of algorithm DIFFUSION is implied if all solutions of DIFFU-
STION satisfy the conditions of problem 2.1. Recall these conditions:

(2.1.a) @+ Ad ="
(21b) u/ = uj’ \V/L,J € 1/)

(2.1.¢) ¢' preserves adjacencies of (2.
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3.2.1 Balance

Recall that the balance requirement is defined by (2.1.a),(2.1.b). Consider the finite
difference equation (3.2) rearranged to express the change in load with each iteration

u(z,y,z,t+ A) —u(z,y,z,t) = Au(z + Ly, z,t + A) +u(e — Ly, z,t + A)
tu(z,y+ 1, z,t+ A)+u(z,y —1,z,t + A)
tu(z,y,z+ 1, t+ A) +u(z,y,z— Lt + A)
—6u(x,y,z,t+ A)]
or as a vector equation with matrix operator £

Expand the solution #(t)in an eigenvector basis & of £

d(t) =Y aijk(t) Tk

1,5,k
and rewrite the vector equation (3.5) in this expansion

Z a; ;5 k t + A $Z gk Z a; 5, k rz,j,k =A Z ,Cai7]-7k(t + A)fi,j,k (36)
1,7,k 1,7,k 1,7,k

For the purpose of analysis assume a periodic domain. The eigenvalues A; ;; of £ are

r. " k
ik =2 (3 — cos2m— — cos 21 — cos 27r—) (3.7)

n n n
where ¢, j and k range from 0 to n/2 — 1. Use the knowledge of these eigenvalues and
LZ;5k+ NijrTije =0

to further simplify (3.6)

D (it 4+ A)Z e (L4 AN ji] — a i (t) i) =0

1,5,k
and by the completeness and orthonormality of the eigenvectors

ai7j7k(t + A) [1 —}— A)\i,j,k] — ai7]~7k(t) = 0



16 CHAPTER 3. A SCALABLE DIFFUSION METHOD

showing that the time dependent decay of each component 2,5, k is

a; ;x(0) .
iin(A) = —2 .
a 7]7k( ) 1 _I_ L/\)\Z'J"k (3 8)
An arbitrary component i, j, k decays in amplitude by a factor € in 7 steps if
[1 -+ A)\i,j,k]_T S € (39)

Equation (3.8) shows that all components of any initial disequilibrium decay in am-
plitude to zero. Further this decay occurs at exponential rates. It is this exponential
property that underlies the O(log N) serial time complexity of the algorithm. The
elapsed time complexity O(% log N) is discussed later in this chapter.

Because all components decay to zero amplitude the calculation of @’ satisfies
the balance requirement (2.1.a),(2.1.b). In order for algorithm DIFFUSION to be
correct it is also necessary that the transfer of work cause the resulting workloads
to equal this calculated «’. The transfer step of algorithm DIFFUSION sends
A (u'; — u';) to each neighbor 7. On a three dimensional multicomputer the net change
at each computer from this transfer is

—A(us = ey 241)

=  (14+6A)u(z,y,z,t+A)—
Au(z +de,y,z,t + A) + u(z — dz,y,z,t + A)
tu(x,y +dy,z,t + A) +u(z,y — dy, z,t + A)
+u(z,y,z+dz,t + A) +u(z,y,z — dz,t + A)]

This is equation (3.2).

3.2.2 Adjacency

Recall that condition (2.1.c) is the adjacency requirement. If an initial assignment ¢
preserves adjacencies of a domain {2 then the new assignment ¢’ must preserve the
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same adjacencies. This means that every pair of elements w;,w; which are adjacent
in  reside on either the same computer or on adjacent computers.

In order to demonstrate that solutions of algorithm DIFFUSION satisfy the
adjacency requirement it suffices to show that algorithm DIFFUSION preserves
adjacencies which are present in an initial assignment ¢. This can be demonstrated
by an informal argument.

e ¢ preserves adjacencies of Q if ¢ preserves adjacencies of Q and algorithm

DIFFUSION does not destroy adjacencies.

e Algorithm DIFFUSION does not destroy adjacencies if it does not destroy
them in any transfer.

e Algorithm DIFFUSION need not destroy adjacencies in any transfer because
all transfers occur between adjacent computers.

This argument does not suggest that adjacencies are preserved by all possible
transfer mechanisms. Instead it suggests that transfer mechanisms exist which pre-
serve adjacencies. To make this point concrete consider the example of a domain
decomposed grid computation on a three dimensional multicomputer. Each com-
puter solves a portion of a three dimensional domain. A transfer mechanism which
preserves adjacencies selects for transfer those elements w which are nearest in € to
elements on adjacent computers. Such a mechanism can be implemented with index-
ing to have a fixed cost per transaction. Coarse grained versions of this approach have
been shown effective in molecular dynamics and vortex calculations [3, 7, 9]. In some
applications it may not be practical to transfer work in small quantities. In these
cases it may be more efficient to postpone transfers until the algorithm has converged
on a value for Ad.

3.3 Static problem analysis

Recall that the static load balancing problem is a special case of problem 2.1. In this
special case the initial assignment ¢ maps the entire domain {2 to a single computer ;.
Algorithm DIFFUSION solves instances of the static problem by diffusing domain
elements from 1; until the balance requirement is met.

It is possible to analyze the convergence to equilibrium of instances of the static
problem. The initial assignment ¢ corresponds to an instance of a unit impulse. A
unit impulse is a summation of equally weighted sinusoids. Recall from equation (3.9)
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that to reduce the amplitude of an arbitrary component z, 7, k by ¢ in 7 steps of the
method requires [1 + A\, jx]”" < e. The fastest case occurs for the smallest positive
eigenvalue Ago1 = (2 — 2cos(271)) which corresponds to a high frequency sinusoid.
To reduce such a disturbance requires

Ine? (3.10)
T = :
In (1 + A (2 — 2cos 2%%))
Convergence of this component approaches In ¢! for large n since

1
lim In <1 + A <2—2¢0527r—)> =1

Convergence of lowest wavenumber component A, /2_1,,/2-1,n/2—1 is slow because

T =

I e!
{ nen/H } (3.11)
In (1 + A(6 — 6 cos Ly ))

This converges to oo for large n because

2—-2
nli_}rgoln (1—|—A (6—6COSW%)) =0

By understanding the decay of individual components it is possible to analyze the
decay of a summation of equally weighted components over time. The following
text uses the Poisson bracket (-,-) to represent the inner product operator. When
discussing loads or eigenvectors it uses u[z,y, z] or x; ;x[z,y, z] to denote the vector
element which corresponds to location z,y,z of the computational grid with the
convention that [0,0,0] is the first element of the vector. Then the initial disturbance
confined to a particular processor z,y, z can be written as an eigenvector expansion

i(0) = 2 armn(0)T1mn (3.12)

{,m,n

Since by assumption the instance is a unit impulse the initial disturbance u(0) is zero
except at element [z,y, z]. Then

(Zijr,W(0)) = @i k[, y, 2] (3.13)
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This is equal to the initial amplitude a; ;x(0) of each eigenvector @, ; x

(@8, u(0)) = <fi,j,k, > az,m,n(U)fz,m,n>

{,m,n

= Z (Zi ks Ttmom) @lmn(0)

{,m,n

= Z a1,m.n(0)0i16 1 0kn

{,m,n

= ai7j7k(0) (314)

In order to facilitate analysis it has been assumed that the computational domain
has periodic boundary conditions. Because of this assumption the origin of the coor-
dinate system is arbitrary. Without loss of generality place the origin at the source
of the disturbance and take + = y = z = 0. This has no effect on the eigenvectors

Z; ;r and from (3.13), (3.14)
a; jk(0) = 2jk[0,0,0] (3.15)

Placing the origin at the source of the disturbance is convenient in considering the first
element of the eigenvectors x; ;[0,0,0]. £ has n/2 distinct eigenvalues A; ;x each of
algebraic multiplicity two. Each of these eigenvalues has geometric multiplicity eight,
ie. has eight linearly independent associated eigenvectors of unit length

Tijele,y, z) = cij b1 2rai/n) Fy 2ryg/n) Fs (2nzk/n) (3.16)

where each F; is either sin or cos. By choosing © = y = z = 0 this expression is zero
except for the single eigenvector for which Fi(x) = Fy(x) = F5(x) = cos(x). Without
loss of generality restrict consideration to initial disturbances of the form

u[0,0,0](0) = > ¢ jwwikl0,0,0] = Zcuk (3.17)

1.,k 1,4,k

From (3.8) define the time dependent disturbance at any location 2,3y, 2’

ula',y', 2 1(TA) = Y cije L+ ANijel zigelasy', 2]

ik
.
= > i L+ AXijx] 7 cos Py
ik n
1 'L
cos 27r£cos 2772— (3.18)

n n
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From (3.16) a necessary condition for a normalized eigenvector is

1 = c?jk Z cos? (2%2) cos? (27T£) cos? (2#2—)
W n

it n n
= ¢ l Z <1 + COS47'('£) <1 + cos 4%2) 1 4+ cos 47rﬁ
T Thikg et n n n
1 Y7 k
— Cij,kg 1%:2. { (1 + cos 477%) (1 + cos 4%%)
+ E cos (4772) E cos (471'&) (1 + cos 471'2—) } (3.19)
T n Y,z n n
Simplify the preceding expression by the following
Lemma 1
Z Cos 471'ﬁ =0
~ n
Proof:
i) :
Arl — R rzi/n
; cos 47 " ZI: € (e )
— Re Z 6247Tm'/n
— RGZ <6247Ti/n)z
ez47ri/n 1 — ez47ri/n "
e (e )
1 — ez47m/n
= 0
Q.E.D.

Repeated application of lemma (1) to equation (3.19) yields
1

2 yJ zk
1 = Ci,j,kg Z <1 —|—cos47rg) (1 —|—cos47r—)

I7y72 n

1 k k
= C?jkg lz (1 —|—cos47r2—) + Z <Cos47rj—y> (1 —|—COS47TZ—)]
1 71/

I‘7y72 71/ l‘7y72 n
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1 zk
= C?7j7k§ LZy:Z 1+ zzyzz (COS 477;)]
s 1 o

From which one concludes

8 1/2
Ci,j,k = <—) \V/ ‘i,j, k

n
From (3.17),(3.18) and (3.3) the time dependent disturbance at 0,0,0 is therefore
8 _ i i N
ul0,0,0](7A) = = > |14+ A2 (3 — cos2m— — cos 2= — cos 27 — (3.21)
n

~ n n n
1.,k

From (3.21) it follows that «[0,0,0](7A) < € when

-7

8 ) 7 k
—Z [1—|—A2 (3—COSQ7TL—COSQ7TJ——COSQ7T—) < e
ni= n n n
and therefore
1 -1
_ S . (3.22)
In(8/n) 3, ik [1 + A2 (3 — cos 27+ — cos 2w — cos 271'%)]

3.4 Scaling

Equation (3.22) is an expression for 7. A similar expression for v can be obtained by
considering the convergence of the Jacobi iteration. From the Gersgorin disc theorem
[24] the eigenvalues A of the Jacobi iteration are bounded |A| < 1:3-21\' Since the row
and column sums are constant and the iteration matrix is nonnegative ([24], theorem

8.1.22) the spectral radius equals the row sum

6A
1 +6A

p(D7'T) = (3.23)

Define the error in a current value @™ under the iteration as e(ﬁ(m)) = (ﬁ(m) —u*)
where u* is the fixed point of the iteration. Then for v > 0

(@) = e((DIT) @) = (DT e(@) (3.24)
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which converges when p(D™'T) < 1 since p((D™'T)") = (p(D~'T))*. In order to

quantify the error define the infinity norm

- maX uz‘7y72 I7y7Z

l‘7y72

e(ul™ )

He(lj(m))”m = nax T,Y,2

$7y72

Using this norm define a necessary condition to improve the accuracy of the solution
@ by a factor € in v steps to be He(ﬁ(”))Hoo < GHe(ﬁ(O))HOO. This is satisfied when
(p(D'T))” < € and thus

Ine o
T+6A

The elapsed time complexity of algorithm DIFFUSION is proportional to the

product Tv. Table 3.1 provides values for the parameters 7, v, A and € which minimize

this quantity. Equation (3.26) demonstrates that 7v is logarithmic in N.

Inelne?!

In 1-??% In(8/n) 3, ;& [1 + A2 (3 — cos2rL — cos 2#% — cos 2#%)]

TV =

(3.26)

3.5 Remarks

This chapter has presented a simple algorithm which satisfies the balance and ad-
jacency requirements and which executes in decreasing elapsed times for increasing
problem sizes. The algorithm causes all components of an initial disturbance to decay
in amplitude to zero at exponential rates. Convergence of any disturbance is bounded
by the decay of the slowest component (3.11). Although it is possible to analyze the
convergence of the static problem exactly it is more difficult to predict convergence
of multiple point disturbances. For this reason the next chapter presents simulations
of multiple point disturbances.

Algorithm DIFFUSION is formulated in such a way that it reduces the worst
case imbalance between any two processors ;, ¢); by a factor e. In a practical context
it can be useful to reduce the imbalance below a threshold which is a percentage of
the total load. For example, it can be useful to assert that the worst case imbalance
will be within 10% of the load average for a given problem.

To use the algorithm in this way formulate € as a function of N and of ||, the
total number of domain elements. Define a threshold « of eg. 10% and assert that the
solution will have a worst case imbalance of no more than 10% of the load average.
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If the initial imbalance is [©2| (as in the static problem) then ¢ = §. An optimal A
can be found for any € by minimizing 7v.

Consider the example of a computation with 107 grid points on 100 computers.
The average load is 107/10% = 10°. If &« = 10% then the desired worst case imbalance
is 10*. Solving €|Q] = «|Q|/N gives €107 =1071107107? = ¢ = 107°.
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Chapter 4

Simulations

This chapter presents simulations of three generic problems of interest in computa-
tional fluid dynamics and of a problem with active source terms. The simulations
which follow were executed with a fixed time step A = 0.1, = 3 and ¢ = 0.1. The
results of these simulations demonstrate that 7 is small for realistic problems of inter-
est and elapsed time is a fraction of a second for all instances. As table 3.1 suggests
lower times can be achieved by permitting A, v and € to vary with N. All timings are
for a J-machine! [34] with 33 MHz processors.

Spectral bisection [38] is a popular method to solve instances of the static prob-
lem. This method can require considerable cpu time for large problems. Algorithm
DIFFUSION solved an instance with one million unknowns and 512 computers [41]
in a few hundred milliseconds.

Solution methods for problems in fluid dynamics and structural analysis often
increase the density of a computational grid in response to properties of the solution.
A bow shock resulting from the preceding calculation and a generic launch sequence
with a moving boundary were simulated for a problem with one billion unknowns
on one million computers. The grid density was increased 100% in regions of the
shock and 400% at the moving boundary. Both of these disturbances were removed
by algorithm DIFFUSION in a few hundred milliseconds.

The algorithm is formulated under the assumption that no new work is created
during the time the algorithm is executing. A final simulation shows that the algo-
rithm is robust even in the presence of large and frequent injections of new work.
Algorithm DIFFUSION kept the disturbance below the magnitude of the average

injection for 1000 iterations. The disturbance quickly dissipated after the injection

!The J-machine is an experimental design built at MIT.
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ceased.
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0 ms 34.375 ms 68.75 ms

103.125 ms 137.5 ms 171.875 ms

206.25 ms 240.625 ms 275 ms

Figure 4.1: Static load balancing problem for a grid of one million points on a system
of 512 computers. The initial imbalance was reduced by 90% in 6 steps. Condition
(2.1.b) was satisfied to within 10% of the load average in 162 steps.
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0 ms 34.375 ms 68.75 ms

103.125 ms 137.5 ms 171.875 ms

206.25 ms 240.625 ms 275 ms

Figure 4.2: Dynamic load balancing problem following h-refinement adaptation for
a grid of one billion points on a system of one million computers. Condition (2.1.b)
was satisfied to within 10% of the load average in 170 steps.
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103.125 ms 137.5 ms 171.875 ms

206.25 ms 240.625 ms 275 ms

Figure 4.3: Dynamic load balancing problem following moving boundary adaptation
for a grid of one billion points on a system of one million computers. Condition (2.1.b)
was satisfied to within 10% of the load average in 50 steps.
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515.625 ms 1031.25 ms 1546.875 ms

2062.5 ms 2578.125 ms 3093.75 ms

3609.375 ms 4125 ms 4640.625 ms

Figure 4.4: Problem with active sources. Average activity per iteration is 30,000%
of the initial load average. Activity ceased at step 1000. Error in condition (2.1.b)
decreased by three orders of magnitude in 500 additional iterations.



Chapter 5

Scalable load balancing methods

The load balancing problem has been the subject of considerable discussion in the
past decade [2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 22, 23, 25, 28,
29, 30, 31, 32, 33, 37, 38, 39, 42, 43]. This discussion has suffered from a lack of
consensus regarding the architectures to be considered and the constraints under
which the problem should be solved. An unfortunate consequence of this fact is
that the discussion has little continuity and new methods rarely build on previous
work. Most methods rely on simulation to demonstrate their effectiveness and rarely
have formal proofs of correctness. As a result it can be difficult to extrapolate their
behavior to architectures other than those on which they were simulated. Very few
methods consider the issues of scalability and adjacency. Some noteable approaches
among this group of methods are gradient based models [29], bidding algorithms [31],
a drafting algorithm [32] and a method based on queing theory [11]. Most recently
a spectral bisection method has become popular for problems which involve complex
geometries [38].

5.1 Diffusion

The first published work on diffusion methods is due to Cybenko [14]. This work
proposes a method to compute a balanced distribution of work in an arbitrarily
connected graph. The method assigns a weighting factor «; ; to every edge ¢,7 of a
graph where each vertex ¢ is associated with a workload w;. The method computes
an iteration at each vertex ¢ concurrently

'wz(tﬂ) - wz(-t) + Z%‘ (w;t) . wz('t)) + 772(t+1)
J

31
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In this model the a are constrained so that 37, «;; = 1. Let M denote the matrix
where M;; = «;; for every edge 7,7 in the graph and M;; = 0 if there is no edge
between vertices ¢ and j. 7 represents a stochastic source of new work arising during
the rebalancing process. Then when 1 = 0 the iteration can be expressed as a matrix
equation

B — Mp® (5.1)

The article demonstrates convergence of (5.1) and hence correctness of the algo-
rithm under stationary conditions.® The constraint on « requires that M has row and
column sums equal to 1 and hence the spectral radius is bounded p(M) < 1 ([24] thm.
8.1.22). Since M is nonnegative and irreducible the Frobenius generalization implies
that M has a single eigenvalue of modulus 1 and that the corresponding eigenvectors
are uniform distributions in w. M can have an eigenvalue of -1 only if it can be

o)

which is a condition for the interconnection graph to be bipartite. Therefore the
algorithm does not oscillate so long as the interconnection graph is not bipartite.

partitioned into block form

This work does not explicitly consider the rate of convergence but suggests an

acceleration technique to minimize p(M)
M+ &kl
M,=———k=—(A+ A2)/2
1+« > ( + 2)/

Adding k1 to a diagonal M shifts the eigenvalues A; of M to \; + k. The division by
1 + & normalizes the row and column sums of M to 1 which is necessary in order for
the proof of convergence to hold.

The work considers the problem of active sources n > 0 and demonstrates that if
o is the variance in an initial distribution and n the number of processors then the
asymptotic expected value of the variance is

o= (=)

The article concludes by considering a dimension exchange algorithm for binary
hypercubes in which all «;; = 1/d where d is the dimensionality of the hypercube.

!The proof is by Frobenius’s generalization for nonnegative irreducible matrices of Perron’s the-
orem ([24] thm. 8.2.11). It proves boundedness of the spectral radius and gives conditions for a -1
eigenvalue.
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This is a recursive algorithm in which each dimension in turn balances the work
among it’s set of computers. The algorithm terminates after d serial steps and scales
with elapsed time O(log,; N).

This article has been a precursor of several subsequent scalable and correct load
balancing methods for distributed memory computers [6, 13, 21, 25, 43]. For example,
implementations of this algorithm can bear a strong resemblance to algorithm DIF-
FUSION. In the absence of source terms (7 = 0) and under the assumption that the
graph represents the interconnection structure of a three dimensional mesh connected
multicomputer matrix M in (5.1) is equivalent to the expression AL + I where L is
taken from (3.5). Cybenko’s method also bears a strong resemblance to a proposal
by Boillat [6]. This method is also formulated for an arbitrary interconnection graph.
When applied to a three dimensional interconnection mesh for a multicomputer the
algorithm is

FHD = pyz® (5.2)

where Pg is a matrix with the same sparsity structure as L in equation (3.5) but
where every nonzero term is 1/7. While this does not correspond directly to a finite
difference expression it is obviously convergent by the same arguments presented in
[14]. The article uses Markov techniques to demonstrate that the iteration (5.2) is
acyclic and converges to equilibrium. It considers the rate of convergence and derives
an upper bound for eigenvalues. On a three dimensional mesh this upper bound is

A<1— %SiHQ s

7 2n

Using this bound it demonstrates that worst case convergence has an upper bound
elapsed time complexity of O(n?). It is unfortunate that this method has received
little attention as it is one of the few which has been implemented in the context
of real scientific calculations [7, 9]. This may be partly the result of an obscurity of
notation and presentation.

5.2 Transfer function

A novel formulation of the problem of calculating Vi is introduced by Conley [13].
The formulation, which arose in part from discussions of the load balancing problem
with this author, requires solution of an elliptic equation

VI = -Vi (5.3)
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where the resulting transfer of loads is effected by

—

Ai=V-T (5.4)
If u; represents the average workload then correctness of (5.3),(5.4) follow from
V.- T = up — U
V(V-T) = Vu,—Vi
~Vx (VxT)+ VT = -Vi
VT = —Vi (5.5)

The final step of (5.5) assumes an irrotational constraint V x T = 0. Irrotational
solutions are a subset of the set of valid solutions of problem 2.1.

Problems like (5.3) are well suited to solution by scalable concurrent iterations
similar to (3.4). Simulations by this author using iterative solutions of a finite differ-
ence formulation of (5.3) have shown that overall solution times to fine A« are similar
to times for algorithm DIFFUSION.

Transfers must occur as a second step of the algorithm. This means that a load
balancing method based on this calculation would have a serial dependency. This
dependency could be expensive for large disturbances. Diffusion methods do not
suffer from this problem because they transfer work over many steps concurrently
with the calculation of #'.

5.3 A multilevel method

Multigrid methods [40] are a popular way to accelerate convergence of iterative so-
lution methods for linear systems of equations. Horton [25] suggests that a similar
approach can accelerate the convergence of diffusion methods.

The article presents a “multilevel” algorithm for load balancing which has loga-
rithmic elapsed time complexity. This algorithm requires that the aggregate workload
among a subset of computers is known at each step. Although this is certainly fea-
sible it suggests the use of an algorithm similar to SIMPLE and SIMPLE2 of the
second chapter. This suggests that this algorithm may not be particularly efficient in
comparison to diffusion methods.

The inner loop of a “basic diffusion model” is presented as

for all neighbors j of ¥, do

transfer (u; —u;)/2 units of work from %; to t;
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In one dimension this transaction is equivalent to

i i o Ui T Wi Ulgm) - 'u’ETf)

1 m m
= S+ )

LD ) 1(ul<m) /<m>)_%(.

This is algorithm AVERAGE which was shown in the second chapter to be incorrect
in the absence of periodic boundary conditions. On a hypercube architecture this
algorithm is identical to Cybenko’s dimension exchange.

5.4 A distributed task pool

The task pool algorithm of Hofstee et al [22] is scalable and correct. This algorithm is
concerned with distributing a pool of tasks to a set of computers in a way that ensures
load balance. Processes are assumed to be independent and no assumptions are made
regarding the order of execution or adjacency relationship among the processes. An
example of an application for which this algorithm could be beneficial might be an
online transaction processing system in which a large number of tasks (transactions)
queue in a task pool until they can be serviced by a multicomputer. The algorithm
is not intended for domain decomposed calculations in which tasks must execute
concurrently and in which the adjacency constraint (2.1.c) must be observed. Because
of this the algorithm appears to be less useful for grid computations.
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